Anti-vibration Structure for SMD Type

Available for SMD $\phi 8 \sim \phi 18$ of automotive application (Terminal code: V)
Diagram of Dimensions

$\phi \mathrm{D} \geqq 10 \mathrm{~mm}$

Lead Spacing and Diameter
Unit: mm

$\phi \mathrm{D}$	$\mathrm{L} \pm 1.0$	A	B	C	W	a	b	$\mathrm{P} \pm 0.2$
8	10.5 ± 0.5	8.5	8.9	9.9	$0.7 \sim 1.1$	0.3	0.5	3.1
10	10.5 ± 0.5	10.5	10.9	11.9	$0.7 \sim 1.3$	0.3	0.5	4.7
12.5	13.5	13.0	13.5	14.5				4.4
12.5	16.5	13.0	13.5	14.5		$1.1 \sim 1.4$	0.4	1.0
16	16.5	16.5	17.0	18.2	4.4			
18	16.5	18.5	19.0	20.2				6.4
					6.4			

Land Pattern (Anti-vibration Structure)

Unit: mm							
Case Size $(\phi \mathrm{D} \times \mathrm{L})$	Land size						
	G	Y	X	S	T		
8×10.5	3.0	4.3	3.0	1.1	2.2		
10×10.5	4.0	4.7	3.0	1.2	2.4		
12.5	3.8	6.0	6.0	3.0	5.0		
16×16.5	5.0	8.0	7.5	3.0	5.0		
18×16.5	5.0	8.5	6.3	---	---		

When using SMD capacitor with an anti-vibration structure, please dimension the land patterns like the recommended land patterns in order to achieve a high level of vibration resistance and to avoid SMD capacitors falling off the circuit board.
The shaded areas marked with "O" are optional. Please consult with us for details.

Discontinued Series

The following series are discontinued. Please use the recommended in the table.

Type	Original Series	Features	Recommended Substitution
SMD	$\begin{gathered} \text { VE2, VE3,VEA, VE, } \\ \text { VSS } \end{gathered}$	Higher Capacitance Range	VEJ, VES
	VGA, VEL, VEC	Higher Capacitance Range, $105^{\circ} \mathrm{C}$	VEJ
	VEK	Long Life, $105^{\circ} \mathrm{C}$	VZH
	VLV	Low ESR, High Reliability, Anti-vibartion	VZH
	VLW	High Temperature Usage, $125^{\circ} \mathrm{C}$, Anti-vibration	VUA
	VEB	Bi-polarized	VGB
Radial	REA / SEA	Standard, $85^{\circ} \mathrm{C}$	RGA / SG
	RLA / SLA	Low Leakage Current	RA / SA
	SS, SSL	$5 \mathrm{Lmm}, 85^{\circ} \mathrm{C}$	SSG
	RXZ	Super Ultra Low Impedance (Design for M/B)	ORS / ORA
	RXH	Ultra Low Impedance, High Reliability (Design for M/B)	
	RZD	Ultra Low Impedance	
	RXF	High Ripple Current, Long Life	RXQ
	RXY	Low Impedance	RZW
	RZY	High Reliability	
	RZF	High Reliability, Long Life	
	RN, SN, SSN	Bi-polarized	RNG
Axial	TEA	General	

